Et homogent polyeder er et polyeder , hvis ansigter er regulære polygoner , og det er toppunkttransitivt ( transitivt med hensyn til toppunkter , og også isogonalt, det vil sige, der er en bevægelse , der tager et toppunkt til ethvert andet). Det følger heraf, at alle hjørner er kongruente , og polyederet har en høj grad af spejl og rotationssymmetri .
Ensartede polyedre kan opdeles i konvekse former med ansigter i form af konvekse regulære polygoner og stjerneformer. Stjerneformer har almindelige stjernepolygonflader , toppunkter eller begge dele.
Listen omfatter:
I 1970 beviste den sovjetiske videnskabsmand Sopov [1] at der kun er 75 homogene polyedre, der ikke er inkluderet i den uendelige række af prismer og antiprismer . John Skilling opdagede et andet polyeder ved at slække på betingelsen om, at en kant kun kan tilhøre to flader. Nogle forfattere anser ikke dette polyeder for at være homogent, da nogle par af kanter falder sammen.
Ikke inkluderet:
Der bruges fire nummereringsskemaer for ensartede polyedre, der adskiller sig i bogstaver:
Konvekse former er anført i rækkefølge efter grad af toppunktskonfiguration fra 3 flader/hjørner og fremefter, og ved at øge siderne ved ansigtet. Denne rækkefølge gør det muligt at vise topologisk lighed.
Navn | Billede | Vertex konfigurationstype |
Wythoff symbol |
Symm. | C# | W# | U# | K# | Toppe _ |
Röber _ |
Facetter _ |
Tæthed _ |
Facetter efter type | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Tetraeder | 3.3.3 |
3 | 2 3 | T d | C15 | W001 | U01 | K06 | fire | 6 | fire | 2 | en | 4{3} | |
trekantet prisme | 3.4.4 |
2 3 | 2 | D3h _ | C33a | -- | U76a | K01a | 6 | 9 | 5 | 2 | en | 2{3} +3{4} | |
afkortet tetraeder | 3.6.6 |
2 3 | 3 | T d | C16 | W006 | U02 | K07 | 12 | atten | otte | 2 | en | 4{3} +4{6} | |
afkortet terning | 3.8.8 |
2 3 | fire | Åh h | C21 | W008 | U09 | K14 | 24 | 36 | fjorten | 2 | en | 8{3} +6{8} | |
afkortet dodekaeder | 3.10.10 |
2 3 | 5 | jeg h | C29 | W010 | U26 | K31 | 60 | 90 | 32 | 2 | en | 20{3} +12{10} | |
terning | 4.4.4 |
3 | 24 | Åh h | C18 | W003 | U06 | K11 | otte | 12 | 6 | 2 | en | 6{4} | |
Femkantet prisme | 4.4.5 |
2 5 | 2 | D5h _ | C33b | -- | U76b | K01b | ti | femten | 7 | 2 | en | 5{4} +2{5} | |
Sekskantet prisme | 4.4.6 |
2 6 | 2 | D6h _ | C33c | -- | U76c | K01c | 12 | atten | otte | 2 | en | 6{4} +2{6} | |
Ottekantet prisme | 4.4.8 |
2 8 | 2 | D8h _ | C33e | -- | U76e | K01e | 16 | 24 | ti | 2 | en | 8{4} +2{8} | |
Tikantet prisme | 4.4.10 |
2 10 | 2 | D 10 timer | C33g | -- | U76g | K01g | tyve | tredive | 12 | 2 | en | 10{4} +2{10} | |
Todekagonalt prisme | 4.4.12 |
2 12 | 2 | D 12 timer | C33i | -- | U76i | K01i | 24 | 36 | fjorten | 2 | en | 12{4} +2{12} | |
afkortet oktaeder | 4.6.6 |
2 4 | 3 | Åh h | C20 | W007 | U08 | K13 | 24 | 36 | fjorten | 2 | en | 6{4} +8{6} | |
Stumpet cuboctahedron | 4.6.8 |
2 3 4 | | Åh h | C23 | W015 | U11 | K16 | 48 | 72 | 26 | 2 | en | 12{4} +8{6} +6{8} | |
Rhombotrunkeret icosidodecahedron | 4.6.10 |
2 3 5 | | jeg h | C31 | W016 | U28 | K33 | 120 | 180 | 62 | 2 | en | 30{4} +20{6} +12{10} | |
Dodekaeder | 5.5.5 |
3 | 25 | jeg h | C26 | W005 | U23 | K28 | tyve | tredive | 12 | 2 | en | 12{5} | |
Afkortet icosahedron | 5.6.6 |
2 5 | 3 | jeg h | C27 | W009 | U25 | K30 | 60 | 90 | 32 | 2 | en | 12{5} +20{6} | |
Oktaeder | 3.3.3.3 |
4 | 2 3 | Åh h | C17 | W002 | U05 | K10 | 6 | 12 | otte | 2 | en | 8{3} | |
Firkantet antiprisme | 3.3.3.4 |
| 2 2 4 | D4d _ | C34a | -- | U77a | K02a | otte | 16 | ti | 2 | en | 8{3} +2{4} | |
Femkantet antiprisme | 3.3.3.5 |
| 2 2 5 | D5d _ | C34b | -- | U77b | K02b | ti | tyve | 12 | 2 | en | 10{3} +2{5} | |
Sekskantet antiprisme | 3.3.3.6 |
| 2 2 6 | D6d _ | C34c | -- | U77c | K02c | 12 | 24 | fjorten | 2 | en | 12{3} +2{6} | |
Ottekantet antiprisme | 3.3.3.8 |
| 2 2 8 | D8d _ | C34e | -- | U77e | K02e | 16 | 32 | atten | 2 | en | 16{3} +2{8} | |
Dekagonal antiprisme | 3.3.3.10 |
| 2 2 10 | D10d _ | C34g | -- | U77g | K02g | tyve | 40 | 22 | 2 | en | 20{3} +2{10} | |
Dodekagonal antiprisme | 3.3.3.12 |
| 2 2 12 | D12d _ | C34i | -- | U77i | K02i | 24 | 48 | 26 | 2 | en | 24{3} +2{12} | |
Cuboctahedron | 3.4.3.4 |
2 | 3 4 | Åh h | C19 | W011 | U07 | K12 | 12 | 24 | fjorten | 2 | en | 8{3} +6{4} | |
Rhombicuboctahedron | 3.4.4.4 |
3 4 | 2 | Åh h | C22 | W013 | U10 | K15 | 24 | 48 | 26 | 2 | en | 8{3} +(6+12){4} | |
Rhombicosidodecahedron | 3.4.5.4 |
3 5 | 2 | jeg h | C30 | W014 | U27 | K32 | 60 | 120 | 62 | 2 | en | 20{3} +30{4} +12{5} | |
icosidodecahedron | 3.5.3.5 |
2 | 3 5 | jeg h | C28 | W012 | U24 | K29 | tredive | 60 | 32 | 2 | en | 20{3} +12{5} | |
icosahedron | 3.3.3.3.3 |
5 | 2 3 | jeg h | C25 | W004 | U22 | K27 | 12 | tredive | tyve | 2 | en | 20{3} | |
snub terning | 3.3.3.3.4 |
| 2 3 4 | O | C24 | W017 | U12 | K17 | 24 | 60 | 38 | 2 | en | (8+24){3} +6{4} | |
snub dodekaeder | 3.3.3.3.5 |
| 2 3 5 | jeg | C32 | W018 | U29 | K34 | 60 | 150 | 92 | 2 | en | (20+60){3} +12{5} |
Navn | Billede | Wythoff symbol |
Vertex konfigurationstype |
Symm. | C# | W# | U# | K# | Toppe _ |
Röber _ |
Facetter _ |
Tæthed _ |
Facetter efter type | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Octahemioctahedron | 3 / 2 3 | 3 | 6.3 / 2.6.3 _ _ |
Åh h | C37 | W068 | U03 | K08 | 12 | 24 | 12 | 0 | 8{3}+4{6} | ||
Tetrahemihexahedron | 3 / 2 3 | 2 | 4.3 / 2.4.3 _ _ |
T d | C36 | W067 | U04 | K09 | 6 | 12 | 7 | en | 4{3}+3{4} | ||
Cubohemioctahedron | 4 / 3 4 | 3 | 6.4 / 3.6.4 _ _ |
Åh h | C51 | W078 | U15 | K20 | 12 | 24 | ti | -2 | 6{4}+4{6} | ||
Stort dodekaeder |
5/2 | _ _ 25 | (5.5.5.5.5)/ 2 |
jeg h | C44 | W021 | U35 | K40 | 12 | tredive | 12 | -6 | 3 | 12{5} | |
Stort icosahedron |
5/2 | _ _ 2 3 | (3.3.3.3.3)/ 2 |
jeg h | C69 | W041 | U53 | K58 | 12 | tredive | tyve | 2 | 7 | 20{3} | |
Store bitrigonale icosidodecahedron [ | 3/2 | _ _ 3 5 | (5.3.5.3.5.3)/ 2 |
jeg h | C61 | W087 | U47 | K52 | tyve | 60 | 32 | -otte | 6 | 20{3}+12{5} | |
Lille rhombohexahedron | 2 4 ( 3 / 2 4 / 2 ) | | 4.8. 4 / 3,8 _ |
Åh h | C60 | W086 | U18 | K23 | 24 | 48 | atten | -6 | 12{4}+6{8} | ||
Lille cuboctahedron | 3 / 2 4 | fire | 8.3 / 2.8.4 _ _ |
Åh h | C38 | W069 | U13 | K18 | 24 | 48 | tyve | -fire | 2 | 8{3}+6{4}+6{8} | |
Great rhombicuboctahedron | 3 / 2 4 | 2 | 4.3 / 2.4.4 _ _ |
Åh h | C59 | W085 | U17 | K22 | 24 | 48 | 26 | 2 | 5 | 8{3}+(6+12){4} | |
Lille dodeco -hemidodecahedron | 5 / 4 5 | 5 | 10.5 / 4.10.5 _ _ |
jeg h | C65 | W091 | U51 | K56 | tredive | 60 | atten | -12 | 12{5}+6{10} | ||
Great dodeco -hemicosahedron | 5 / 4 5 | 3 | 6.5 / 4.6.5 _ _ |
jeg h | C81 | W102 | U65 | K70 | tredive | 60 | 22 | -otte | 12{5}+10{6} | ||
Lille icoso -hemidodecahedron | 3 / 2 3 | 5 | 10.3 / 2.10.3 _ _ |
jeg h | C63 | W089 | U49 | K54 | tredive | 60 | 26 | -fire | 20{3}+6{10} | ||
Lille dodecikosaeder | 3 5 ( 3 / 2 5 / 4 ) | | 10.6. 10/9 _ _ _ 6/5 _ _ |
jeg h | C64 | W090 | U50 | K55 | 60 | 120 | 32 | -28 | 20{6}+12{10} | ||
Lille rombisk dodekaeder | 2 5 ( 3 / 2 5 / 2 ) | | 10.4. 10/9 _ _ _ 4/3 _ _ |
jeg h | C46 | W074 | U39 | K44 | 60 | 120 | 42 | -atten | 30{4}+12{10} | ||
Lille dodeco-icosidodecahedron [ | 3 / 2 5 | 5 | 10.3 / 2.10.5 _ _ |
jeg h | C42 | W072 | U33 | K38 | 60 | 120 | 44 | -16 | 2 | 20{3}+12{5}+12{10} | |
Rhombicosahedron | 2 3 ( 5 / 4 5 / 2 ) | | 6.4. 6/5 . _ _ 4/3 _ _ |
jeg h | C72 | W096 | U56 | K61 | 60 | 120 | halvtreds | -ti | 30{4}+20{6} | ||
Great icoso-icosidodecahedron [ | 3 / 2 5 | 3 | 6.3 / 2.6.5 _ _ |
jeg h | C62 | W088 | U48 | K53 | 60 | 120 | 52 | -otte | 6 | 20{3}+12{5}+20{6} | |
pentagram prisme |
2 5 / 2 | 2 | 5 / 2.4.4 _ |
D5h _ | C33b | -- | U78a | K03a | ti | femten | 7 | 2 | 2 | 5{4} +2 { 5/2 } | |
Heptagram prisme 7/2 | 2 7 / 2 | 2 | 7 / 2.4.4 _ |
D7h _ | C33d | -- | U78b | K03b | fjorten | 21 | 9 | 2 | 2 | 7 {4}+2 { 7/2 } | |
Heptagram prisme 7/3 | 2 7 / 3 | 2 | 7/3 .4.4 _ _ |
D7h _ | C33d | -- | U78c | K03c | fjorten | 21 | 9 | 2 | 3 | 7{4} +2 { 7/3 } | |
Octagram prisme | 2 8 / 3 | 2 | 8/3 .4.4 _ _ |
D8h _ | C33e | -- | U78d | K03d | 16 | 24 | ti | 2 | 3 | 8 {4}+2 { 8/3 } | |
Pentagram antiprisme | | 2 2 5/2 _ | 5/2 .3.3.3 _ _ |
D5h _ | C34b | -- | U79a | K04a | ti | tyve | 12 | 2 | 2 | 10{3} +2 { 5/2 } | |
Pentagram krydset antiprisme | | 2 2 5/3 _ | 5/3 .3.3.3 _ _ |
D5d _ | C35a | -- | U80a | K05a | ti | tyve | 12 | 2 | 3 | 10{3} +2 { 5/2 } | |
Heptagram antiprisme 7/2 | | 2 2 7/2 _ | 7/2 .3.3.3 _ _ |
D7h _ | C34d | -- | U79b | K04b | fjorten | 28 | 16 | 2 | 3 | 14{3} +2 { 7/2 } | |
Heptagram antiprisme 7/3 | | 2 2 7/3 _ | 7/3 .3.3.3 _ _ |
D7d _ | C34d | -- | U79c | K04c | fjorten | 28 | 16 | 2 | 3 | 14{3} +2 { 7/3 } | |
Heptagram krydset antiprisme | | 2 2 7 / 4 | 7/4 .3.3.3 _ _ |
D7h _ | C35b | -- | U80b | K05b | fjorten | 28 | 16 | 2 | fire | 14{3} +2 { 7/3 } | |
Octagram antiprisme | | 2 2 8/3 _ | 8/3 .3.3.3 _ _ |
D8d _ | C34e | -- | U79d | K04d | 16 | 32 | atten | 2 | 3 | 16{3} +2 { 8/3 } | |
Oktagram krydset antiprisme | | 2 2 8/5 _ | 8/5 .3.3.3 _ _ |
D8d _ | C35c | -- | U80c | K05c | 16 | 32 | atten | 2 | 5 | 16{3} +2 { 8/3 } | |
Lille stjernedodekaeder _ |
5 | 2 5/2 _ _ | ( 5/2 ) 5 _ _ |
jeg h | C43 | W020 | U34 | K39 | 12 | tredive | 12 | -6 | 3 | 12 { 5/2 } _ | |
Stort stjerneformet dodekaeder |
3 | 2 5/2 _ _ | ( 5/2 ) 3 _ _ |
jeg h | C68 | W022 | U52 | K57 | tyve | tredive | 12 | 2 | 7 | 12 { 5/2 } _ | |
Bitriagonal dodecodedecahedron [ | 3 | 5/3 5 _ _ | ( 5 / 3,5 ) 3 |
jeg h | C53 | W080 | U41 | K46 | tyve | 60 | 24 | -16 | fire | 12{5} +12 { 5/2 } | |
Lille bitriagonal icosidodecahedron [ | 3 | 5/2 3 _ _ | ( 5 / 2.3 ) 3 |
jeg h | C39 | W070 | U30 | K35 | tyve | 60 | 32 | -otte | 2 | 20{3} +12 { 5/2 } | |
Stjerne afkortet sekskant | 2 3 | 4/3 _ _ | 8/3 . _ _ 8 / 3.3 _ |
Åh h | C66 | W092 | U19 | K24 | 24 | 36 | fjorten | 2 | 7 | 8 {3}+6 { 8/3 } | |
Stort rhombohexahedron |
2 4 / 3 ( 3 / 2 4 / 2 ) | | 4,8 / 3 . _ 4/3 . _ _ 8/5 _ _ |
Åh h | C82 | W103 | U21 | K26 | 24 | 48 | atten | -6 | 12{4} +6 { 8/3 } | ||
Great cuboctahedron | 3 4 | 4/3 _ _ | 8 / 3.3 . 8 / 3.4 _ |
Åh h | C50 | W077 | U14 | K19 | 24 | 48 | tyve | -fire | fire | 8 { 3 }+6{4}+6{ 8/3 } | |
Great dodeco hemidodecahedron | 5 / 3 5 / 2 | 5/3 _ _ | 10/3 . _ _ 5/3 . _ _ 10/3 . _ _ 5/2 _ _ |
jeg h | C86 | W107 | U70 | K75 | tredive | 60 | atten | -12 | 12 { 5/2 } +6 { 10/3 } _ | ||
Lille dodeco -hemicosahedron | 5 / 3 5 / 2 | 3 | 6.5 / 3.6 . _ 5/2 _ _ |
jeg h | C78 | W100 | U62 | K67 | tredive | 60 | 22 | -otte | 12{ 5/2 } +10 {6} | ||
Dodekodedekaeder | 2 | 5/2 5 _ _ | ( 5 / 2,5 ) 2 |
jeg h | C45 | W073 | U36 | K41 | tredive | 60 | 24 | -6 | 3 | 12{5} +12 { 5/2 } | |
Great icoso -hemidodecahedron | 3 / 2 3 | 5/3 _ _ | 10/3 . _ _ 3/2 . _ _ 10 / 3,3 _ |
jeg h | C85 | W106 | U71 | K76 | tredive | 60 | 26 | -fire | 20{3} +6 { 10/3 } | ||
Store icosidodecahedron |
2 | 5/2 3 _ _ | ( 5 / 2.3 ) 2 |
jeg h | C70 | W094 | U54 | K59 | tredive | 60 | 32 | 2 | 7 | 20{3} +12 { 5/2 } | |
Kubisk afkortet cuboctahedron | 4 / 3 3 4 | | 8 / 3.6.8 _ |
Åh h | C52 | W079 | U16 | K21 | 48 | 72 | tyve | -fire | fire | 8{6}+6{8} +6 { 8/3 } | |
Stort afkortet cuboctahedron | 4 / 3 2 3 | | 8 / 3,4 . 6/5 _ _ |
Åh h | C67 | W093 | U20 | K25 | 48 | 72 | 26 | 2 | en | 12{4} +8 {6}+6 { 8/3 } | |
Trunked great dodecahedron | 2 5 / 2 | 5 | 10.10. 5/2 _ _ |
jeg h | C47 | W075 | U37 | K42 | 60 | 90 | 24 | -6 | 3 | 12{ 5/2 } +12 {10} | |
Lille stjerneformet afkortet dodekaeder | 2 5 | 5/3 _ _ | 10/3 . _ _ 10 / 3,5 _ |
jeg h | C74 | W097 | U58 | K63 | 60 | 90 | 24 | -6 | 9 | 12{5} +12 { 10/3 } | |
Stort stjerneformet , afkortet dodekaeder | 2 3 | 5/3 _ _ | 10/3 . _ _ 10 / 3,3 _ |
jeg h | C83 | W104 | U66 | K71 | 60 | 90 | 32 | 2 | 13 | 20{3} +12 { 10/3 } | |
Trunked great icosahedron | 2 5 / 2 | 3 | 6.6. 5/2 _ _ |
jeg h | C71 | W095 | U55 | K60 | 60 | 90 | 32 | 2 | 7 | 12{ 5/2 } +20 {6} | |
Store dodecikosaeder | 3 5 / 3 ( 3 / 2 5 / 2 ) | | 6.10 / 3 . _ 6/5 . _ _ 10/7 _ _ |
jeg h | C79 | W101 | U63 | K68 | 60 | 120 | 32 | -28 | 20{6} +12 { 10/3 } | ||
Store rombiske dodekaeder | 2 5 / 3 ( 3 / 2 5 / 4 ) | | 4.10 / 3 . _ 4/3 . _ _ 10/7 _ _ |
jeg h | C89 | W109 | U73 | K78 | 60 | 120 | 42 | -atten | 30{4} +12 { 10/3 } | ||
Icoso-dodecodecahedron [ | 5 / 3 5 | 3 | 6.5 / 3.6.5 _ _ |
jeg h | C56 | W083 | U44 | K49 | 60 | 120 | 44 | -16 | fire | 12{5}+12{ 5/2 } +20 { 6} | |
Lille bitriagonal dodeco - icosidodecahedron | 5 / 3 3 | 5 | 10.5 / 3.10.3 _ _ |
jeg h | C55 | W082 | U43 | K48 | 60 | 120 | 44 | -16 | fire | 20{3}+12{ ; 5/2 } +12{10} | |
Great bitriagonal dodeco - icosidodecahedron | 3 5 | 5/3 _ _ | 10 / 3.3 . 10 / 3,5 _ |
jeg h | C54 | W081 | U42 | K47 | 60 | 120 | 44 | -16 | fire | 20{3}+12{5} +12 { 10/3 } | |
Great dodeco-icosidodecahedron [ | 5 / 2 3 | 5/3 _ _ | 10/3 . _ _ 5/2 . _ _ 10 / 3,3 _ |
jeg h | C77 | W099 | U61 | K66 | 60 | 120 | 44 | -16 | ti | 20 {3}+12 { 5/2 } +12 { 10/3 } | |
Lille icoso-icosidodecahedron [ | 5 / 2 3 | 3 | 6.5 / 2.6.3 _ _ |
jeg h | C40 | W071 | U31 | K36 | 60 | 120 | 52 | -otte | 2 | 20{3}+12{ 5/2 } +20 { 6} | |
Rhombic dodecahedron | 5 / 2 5 | 2 | 4.5 / 2.4.5 _ _ |
jeg h | C48 | W076 | U38 | K43 | 60 | 120 | 54 | -6 | 3 | 30{4}+12{5} +12 { 5/2 } | |
Great rhombicosidodecahedron [ da | 5 / 3 3 | 2 | 4.5 / 3.4.3 _ _ |
jeg h | C84 | W105 | U67 | K72 | 60 | 120 | 62 | 2 | 13 | 20{3}+30{4} +12 { 5/2 } | |
Iskoudruncated dodecodedecahedron [ | 5 / 3 3 5 | | 10 / 3.6.10 _ |
jeg h | C57 | W084 | U45 | K50 | 120 | 180 | 44 | -16 | fire | 20{6}+12{10} +12 { 10/3 } | |
Trunkeret dodecodecahedron | 5 / 3 2 5 | | 10 / 3,4 . 10/9 _ _ |
jeg h | C75 | W098 | U59 | K64 | 120 | 180 | 54 | -6 | 3 | 30{ 4 }+12{10}+12 { 10/3 } | |
Stort afkortet icosidodecahedron | 5 / 3 2 3 | | 10 / 3.4.6 _ |
jeg h | C87 | W108 | U68 | K73 | 120 | 180 | 62 | 2 | 13 | 30{4}+20{6} +12 { 10/3 } | |
Snub dodecodecahedron | | 2 5 / 2 5 | 3.3. 5 / 2.3.5 _ |
jeg | C49 | W111 | U40 | K45 | 60 | 150 | 84 | -6 | 3 | 60{3}+12{5} +12 { 5/2 } | |
Inverteret snub dodecodecahedron | | 5/3 2 5 _ | 3 5/3 .3.3.5 _ _ |
jeg | C76 | W114 | U60 | K65 | 60 | 150 | 84 | -6 | 9 | 60{3}+12{5} +12 { 5/2 } | |
Great snub icosidodecahedron | | 2 5 / 2 3 | 3 4 . 5/2 _ _ |
jeg | C73 | W116 | U57 | K62 | 60 | 150 | 92 | 2 | 7 | (20+60){3} +12 { 5/2 } | |
Great inverted snub icosidodecahedron | | 5/3 2 3 _ | 3 3 . 5/3 _ _ |
jeg | C88 | W113 | U69 | K74 | 60 | 150 | 92 | 2 | 13 | (20+60){3} +12 { 5/2 } | |
Stort omvendt snub icosidodecahedron |
| 3/2 5/3 2 _ _ _ _ | (3 4 . 5 / 2 )/ 2 |
jeg | C90 | W117 | U74 | K79 | 60 | 150 | 92 | 2 | 37 | (20+60){3} +12 { 5/2 } | |
Great snub dodeco-icosidodecahedron [ | | 5/3 5/2 3 _ _ _ _ | 3 3 . 5 / 3,3 . 5/2 _ _ |
jeg | C80 | W115 | U64 | K69 | 60 | 180 | 104 | -16 | ti | (20+60){3}+(12+12 ) { 5/2 } | |
Snub icoso - dodecodecahedron | | 5/3 3 5 _ | 3 3 .5. 5/3 _ _ |
jeg | C58 | W112 | U46 | K51 | 60 | 180 | 104 | -16 | fire | (20+60){3}+12{5} +12 { 5/2 } | |
Lille snub icosicosidodecahedron [ | | 5/2 3 3 _ | 3 5 . 5/2 _ _ |
jeg h | C41 | W110 | U32 | K37 | 60 | 180 | 112 | -otte | 2 | (40+60){3} +12 { 5/2 } | |
Lille krænget snub icosicosidodecahedron [ da | | 3/2 3/2 5/2 _ _ _ _ _ _ | (3 5 . 5 / 3 )/ 2 |
jeg h | C91 | W118 | U72 | K77 | 60 | 180 | 112 | -otte | 38 | (40+60){3} +12 { 5/2 } | |
Great birombo - icosidodecahedron | | 3/2 5/3 3 5/2 _ _ _ _ _ _ | (4. 5 / 3 .4.3. 4. 5 / 2 .4. 3 / 2 )/ 2 |
jeg h | C92 | W119 | U75 | K80 | 60 | 240 | 124 | -56 | 40{3}+60{4} +24 { 5/2 } |
Navn ifølge Bower |
Billede | Wythoff symbol |
Vertex konfiguration | Symmetri gruppe |
C# | W# | U# | K# | Toppe | ribben | ansigter | Tæthed _ |
Facetter efter type | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Great Bisnub Birombo- Bidodecahedron | | ( 3 / 2 ) 5 / 3 ( 3 ) 5 / 2 | ( 5 / 2 .4.3.3.3.4. 5 / 3 .4. 3 / 2 . 3 / 2 . 3 / 2 .4) / 2 |
jeg h | -- | -- | -- | -- | 60 | 240(*) | 204 | 24 | 120{3}+60{4} +24 { 5/2 } |