Halveringstiden for et kvantemekanisk system ( partikel , kerne , atom , energiniveau osv.) er den tid , hvor systemet henfalder med en sandsynlighed på 1/2 [1] . I løbet af en halveringstid falder i gennemsnit antallet af overlevende partikler med det halve [1] [2] [3] [4] [5] [6] , samt intensiteten af henfaldsreaktionen [2] [5 ] [6] .
Halveringstiden karakteriserer klart henfaldshastigheden af radioaktive kerner, sammen med den gennemsnitlige levetid og sandsynligheden for henfald pr. tidsenhed (henfaldskonstant), disse størrelser er relateret til hinanden ved en simpel entydig sammenhæng [2] [3] [4] [5] [6] .
Halveringstiden er en konstant for en given radioaktiv kerne ( isotop ). For forskellige isotoper kan denne værdi variere fra snesevis af yoktosekunder (10 −24 s) for brint-7 til mere end 10 24 år for tellur-128 , som mange gange overstiger universets alder [4] [5] . Baseret på halveringstidens konstanthed opbygges en metode til radioisotopdatering [5] .
Begrebet halveringstid anvendes både på elementarpartikler, der gennemgår henfald , og på radioaktive kerner [4] . Da henfaldsbegivenheden har en kvantesandsynlighed , så hvis vi betragter en strukturel enhed af stof (en partikel, et atom i en radioaktiv isotop), kan vi tale om halveringstiden som en tidsperiode, hvorefter den gennemsnitlige sandsynlighed for henfaldet af den pågældende partikel vil være lig med 1/2 [1] .
Hvis vi betragter eksponentielt henfaldende systemer af partikler, så vil halveringstiden være den tid, hvor i gennemsnit halvdelen af de radioaktive kerner henfalder [1] [2] [3] [4] [5] [6] . Ifølge loven om radioaktivt henfald er antallet af uhenfaldne atomer på et tidspunkt relateret til det oprindelige (i øjeblikket ) antal atomer ved relationen
hvor er henfaldskonstanten [7] .Per definition derfor, hvor
Yderligere, siden den gennemsnitlige levetid , så [2] [3] [4] [5] [6]
det vil sige, at halveringstiden er omkring 30,7 % kortere end den gennemsnitlige levetid. For eksempel, for en fri neutron = 10,3 minutter, a = 14,9 minutter [5] .
Det bør ikke antages, at alle partikler taget i det indledende øjeblik vil henfalde i to halveringstider. Da hver halveringstid reducerer antallet af overlevende partikler til det halve, vil en fjerdedel af det oprindelige antal partikler forblive i tiden, en ottendedel og så videre [1] [5] . Samtidig vil den forventede gennemsnitlige levetid (henholdsvis både sandsynligheden for henfald og halveringstiden) for hver specifik individuel partikel over tid ikke ændre sig - denne kontraintuitive kendsgerning er en konsekvens af henfaldsfænomenets kvantenatur [ 1] .
Hvis et system med en halveringstid kan henfalde gennem flere kanaler, kan en delvis halveringstid bestemmes for hver af dem . Lad sandsynligheden for henfald langs den i -te kanal ( forgreningsfaktor ) være lig med . Så er den partielle halveringstid for den i - te kanal lig med
Delvis har betydningen af den halveringstid, som et givent system ville have, hvis alle henfaldskanaler var "slået fra", undtagen den i - te. Siden per definition , så for enhver henfaldskanal.
Halveringstiden for en bestemt isotop er en konstant værdi, der ikke afhænger af dens fremstillingsmetode, stoffets aggregeringstilstand, temperatur, tryk, kemisk sammensætning af forbindelsen, hvor den er inkluderet, og praktisk talt enhver anden ekstern faktorer, med undtagelse af handlingen med direkte nuklear interaktion som følge af for eksempel kollision med en højenergipartikel i acceleratoren [5] [6] .
I praksis bestemmes halveringstiden ved at måle aktiviteten af studielægemidlet med jævne mellemrum. I betragtning af, at stoffets aktivitet er proportional med antallet af atomer i det henfaldende stof, og ved hjælp af loven om radioaktivt henfald , kan du beregne halveringstiden for dette stof [8] .
Halveringstidsværdier for forskellige radioaktive isotoper:
Kemisk grundstof | Betegnelse | Ordrenummer (Z) | Massenummer (A) | Halvt liv |
---|---|---|---|---|
Actinium | AC | 89 | 227 | 22 år [9] [10] |
Americium | Er | 95 | 243 | 7,3⋅10 3 år [10] [11] |
Astatin | På | 85 | 210 | 8,3 timer [9] |
Beryllium | Være | fire | otte | 8,2⋅10 -17 sekunder [11] |
Bismuth | Bi | 83 | 208 | 3,68⋅10 5 år [11] [12] |
209 | 2⋅10 19 år [10] [13] | |||
210 | 3.04⋅10 6 år [12] [13] | |||
Berkelium | bk | 97 | 247 | 1,38⋅10 3 år [10] [11] |
Kulstof | C | 6 | fjorten | 5730 år [1] [13] |
Cadmium | CD | 48 | 113 | 9⋅10 15 år [14] |
Klor | Cl | 17 | 36 | 3⋅10 5 år [13] |
38 | 38 minutter [13] | |||
Curium | cm | 96 | 247 | 4⋅10 7 år [9] |
Kobolt | co | 27 | 60 | 5,27 år [13] [15] |
Cæsium | Cs | 55 | 137 | 30,1 år [1] [15] |
Einsteinium | Es | 99 | 254 | 1,3 år [9] [10] |
Fluor | F | 9 | atten | 110 minutter [11] [15] |
Jern | Fe | 26 | 59 | 45 dage [1] [13] |
Frankrig | Fr | 87 | 223 | 22 minutter [9] [10] |
Gallium | Ga | 31 | 68 | 68 minutter [11] |
Brint | H | en | 3 | 12,3 år [13] [15] |
Jod | jeg | 53 | 131 | 8 dage [13] [15] |
Iridium | Ir | 77 | 192 | 74 dage [13] |
Kalium | K | 19 | 40 | 1,25⋅10 9 år [1] [11] |
Molybdæn | Mo | 42 | 99 | 66 timer [5] [11] |
Nitrogen | N | 7 | 13 | 10 minutter [13] |
Natrium | Na | elleve | 22 | 2,6 år [13] [15] |
24 | 15 timer [1] [13] [15] | |||
Neptunium | Np | 93 | 237 | 2.1⋅10 6 år [10] [11] |
Ilt | O | otte | femten | 124 sekunder [13] |
Fosfor | P | femten | 32 | 14,3 dage [1] [13] |
Protactinium | Pa | 91 | 231 | 3,3⋅10 4 år [11] [13] |
Polonium | Po | 84 | 210 | 138,4 dage [9] [13] |
214 | 0,16 sekunder [11] | |||
Plutonium | Pu | 94 | 238 | 87,7 år [11] |
239 | 2,44⋅10 4 år [1] [13] | |||
242 | 3,3⋅10 5 år [9] | |||
Radium | Ra | 88 | 226 | 1,6⋅10 3 år [9] [11] [10] |
Rubidium | Rb | 37 | 82 | 76 sekunder [11] |
87 | 49,7⋅10 9 år [11] | |||
Radon | Rn | 86 | 222 | 3,83 dage [9] [13] |
Svovl | S | 16 | 35 | 87 dage [13] |
Samarium | sm | 62 | 147 | 1.07⋅10 11 år [11] [12] |
148 | 6.3⋅10 15 år [11] | |||
149 | > 2⋅10 15 år [11] [12] | |||
Strontium | Sr | 38 | 89 | 50,5 dage [13] |
90 | 28,8 år [11] | |||
Technetium | Tc | 43 | 99 | 2.1⋅10 5 år [9] [10] |
Tellur | Te | 52 | 128 | 2⋅10 24 år [11] |
Thorium | Th | 90 | 232 | 1,4⋅10 10 år [9] [10] |
Uranus | U | 92 | 233 | 1.⋅10 5 år [13] |
234 | 2,5⋅10 5 år [13] | |||
235 | 7.1⋅10 8 år [1] [13] | |||
238 | 4,5⋅10 9 år [1] [9] [10] [13] | |||
Xenon | Xe | 54 | 133 | 5,3 dage [13] [15] |
Yttrium | Y | 39 | 90 | 64 timer [13] |
Hvis vi betragter tilstrækkeligt tætte tidspunkter og , så kan antallet af kerner, der henfaldt i dette tidsinterval , tilnærmelsesvis skrives som .
Med dens hjælp er det let at estimere antallet af uran-238 atomer , som har en halveringstid på år, der undergår transformation i en given mængde uran, for eksempel i et kilogram inden for et sekund. Når man husker på, at mængden af ethvert grundstof i gram, numerisk lig med atomvægten, som bekendt indeholder 6,02⋅10 23 atomer og sekunder på et år, kan vi få det
Beregninger fører til, at i et kilogram uran henfalder tolv millioner atomer på et sekund. På trods af et så stort antal er transformationshastigheden stadig ubetydelig. Faktisk, i et sekund af den tilgængelige mængde uran, dens fraktion lig med
Prøven indeholder 10 g af plutoniumisotopen Pu-239 med en halveringstid på 24.400 år. Hvor mange plutoniumatomer henfalder hvert sekund?
Da den betragtede tid (1 s) er meget mindre end halveringstiden, kan vi anvende den samme omtrentlige formel som i det foregående eksempel:
Substitution af numeriske værdier giver
Når den pågældende tidsperiode er sammenlignelig med halveringstiden, skal den nøjagtige formel anvendes
Det er velegnet under alle omstændigheder, men i korte perioder kræver det beregninger med meget høj nøjagtighed. Så til denne opgave:
I alle observerede tilfælde (bortset fra nogle isotoper, der henfalder ved elektronindfangning ), var halveringstiden konstant (særskilte rapporter om en ændring i perioden var forårsaget af utilstrækkelig eksperimentel nøjagtighed, især ufuldstændig oprensning fra højaktive isotoper ). I denne henseende anses halveringstiden for at være uændret. På dette grundlag opbygges bestemmelsen af den absolutte geologiske alder af bjergarter, såvel som radiocarbonmetoden til bestemmelse af biologiske resters alder: ved at kende koncentrationen af radioisotopen nu og i fortiden, er det muligt at beregne præcis hvor meget tiden er gået siden da [5] .
Antagelsen om variabiliteten af halveringstiden bruges af kreationister , såvel som repræsentanter for den såkaldte. " alternativ videnskab " for at tilbagevise den videnskabelige datering af klipper, rester af levende væsener og historiske fund, for yderligere at tilbagevise de videnskabelige teorier, der er bygget ved hjælp af en sådan datering. (Se f.eks. artiklerne Creationism , Scientific Creationism , Criticism of Evolutionism , Shroud of Turin ).
Variabiliteten af henfaldskonstanten for elektronindfangning er blevet observeret eksperimentelt, men den ligger inden for en procentdel i hele rækken af tryk og temperaturer, der er tilgængelige i laboratoriet. Halveringstiden i dette tilfælde ændres på grund af en vis (temmelig svag) afhængighed af tætheden af bølgefunktionen af orbitale elektroner i nærheden af kernen af tryk og temperatur. Signifikante ændringer i henfaldskonstanten blev også observeret for stærkt ioniserede atomer (i det begrænsende tilfælde af en fuldt ioniseret kerne kan elektronindfangning kun forekomme, når kernen interagerer med frie plasmaelektroner; desuden henfald, som er tilladt for neutrale atomer, i nogle tilfælde for stærkt ioniserede atomer kan forbydes kinematisk). Alle disse muligheder for at ændre henfaldskonstanterne kan naturligvis ikke bruges til at "gendrive" radiokronologisk datering, da fejlen i selve den radiokronometriske metode for de fleste isotopkronometre er mere end en procent, og højt ioniserede atomer i naturlige objekter på Jorden ikke kan eksisterer i lang tid..
Søgningen efter mulige variationer i radioaktive isotopers halveringstider, både på nuværende tidspunkt og over milliarder af år, er interessant i forbindelse med hypotesen om variationer i værdierne af fundamentale konstanter i fysik ( finstrukturkonstant , Fermi-konstant , etc.). Omhyggelige målinger har dog endnu ikke givet resultater – der er ikke fundet ændringer i halveringstider inden for den eksperimentelle fejl. Det blev således vist, at over 4,6 milliarder år ændrede α-henfaldskonstanten for samarium-147 ikke mere end 0,75 %, og for β-henfaldet af rhenium-187 overstiger ændringen over samme tid ikke 0,5 % [16] ; i begge tilfælde er resultaterne i overensstemmelse med ingen sådanne ændringer overhovedet.
Ordbøger og encyklopædier |
---|