Enhver | |
Sammensætning: | Kvasipartikel |
---|---|
Teoretisk begrundet: | I 1977, en gruppe teoretiske fysikere fra Universitetet i Oslo ledet af Jon Magne Leinaas og Jan Mirheim |
Opdaget: | I 2005 byggede en gruppe fysikere ved Stony Brook University et kvasipartikel- interferometer , hvorpå Vladimir Goldman og hans kolleger identificerede flere hændelser forårsaget af enhver interferens . [en] |
Anion ( eng. Anyon ) er en type partikler, der findes i todimensionelle systemer, som er en generalisering af begreberne fermion og boson .
I 1977 beviste en gruppe teoretiske fysikere fra Universitetet i Oslo , ledet af Jon Magne Leinaas og Jan Mirheim, at den traditionelle opdeling af partikler i fermioner og bosoner ikke gælder for teoretiske partikler, der eksisterer i to dimensioner. Sådanne partikler kan have en række uventede egenskaber. Frank Wilczek foreslog i 1982 navnet anyons for dem (fra det engelske any - any). [2] [3]
Bertrand Halperin fra Harvard University har vist nytten af det anyon-relaterede matematiske apparat til at forklare nogle aspekter af den fraktionelle kvante Hall-effekt . I 1985 testede Frank Wilczek, Dan Arovas og Robert Schrieffer denne erklæring med præcise beregninger og beviste, at de partikler, der findes i disse systemer, faktisk er nogen.
I 2005 byggede en gruppe fysikere ved Stony Brook University et kvasipartikel- interferometer , hvorpå Vladimir Goldman og hans kolleger identificerede flere hændelser forårsaget af enhver interferens . [1] Ved hjælp af elektriske felter dannede de en tynd skive omgivet af en ring på overfladen af en halvleder placeret i et magnetfelt . Kvasi-partikler med en ladning svarende til to femtedele af elektronladningen fødes inde i disken og en tredjedel i ringen. En analyse af de opnåede data bekræftede, at kvasipartikler i ringen og inde i disken kan fødes stabilt og kun forsvinde i grupper af et vist antal, det vil sige, at de adlyder statistik af enhver type.
I 2020 bestemte N. Bartholomew et al. fra Higher Normal School fra et eksperiment i en todimensionel GaAs/AlGaAs heterostruktur mellemstatistikken for anioner med ved at måle korrelationen af elektriske strømme gennem den tredje kontakt under kollisioner af anioner i en elektrongas fra topunktskontakter [4] .
Udviklingen af halvlederteknologi , nemlig aflejring af tynde todimensionelle lag, for eksempel ark af grafen , sætter potentialet for at bruge egenskaberne af anyioner i elektronik.
I tredimensionelt (eller mere) rum er partikler strengt opdelt i fermioner og bosoner , alt efter hvilken statistik de adlyder: fermioner - Fermi-Dirac-statistikker , bosoner - Bose-Einstein-statistikker . På kvantefysikkens sprog er dette formuleret som adfærden af mange-partikeltilstande, når partikler udskiftes. For eksempel, i tilfælde af en to-partikeltilstand, har vi (i Dirac-notation ):
Men i todimensionelle systemer kan man observere kvasipartikler , der følger en fordeling, der varierer kontinuerligt mellem Fermi-Dirac og Bose-Einstein-statistikken:
,hvor er et reelt tal . Hos , har vi Fermi-Dirac-statistikken , og på , har vi Bose-Einstein-statistikken . I tilfældet opnås dog noget andet, kaldet en anyon.
Man kan også introducere begrebet spin af en anion ved at sammenligne det med :
Enhver er beskrevet af en statistik kaldet Braid -statistik , fordi den er relateret til fletningsteori .
Kvasipartikler ( Liste over kvasipartikler ) | |
---|---|
Elementære | |
Sammensatte | |
Klassifikationer |