Heap (datastruktur)


Inden for datalogi er en heap en specialiseret datastruktur af trætypen, der  opfylder heap - egenskaben: hvis B er en underordnet node af node A , så key( A ) ≥ key( B ). Det følger heraf, at elementet med den største nøgle altid er rodknudepunktet i heapen, så nogle gange kaldes sådanne heaps max-heaps (alternativt, hvis sammenligningen er omvendt, vil det mindste element altid være rodknuden, sådanne heaps kaldes min-dynger ). Der er ingen begrænsning på, hvor mange børneknuder hver heap-node har, selvom dette antal i praksis normalt ikke er mere end to. Heapen er den mest effektive implementering af en abstrakt datatype kaldet en prioritetskø . Heaps er afgørende i nogle effektive grafalgoritmer , såsom Dijkstras algoritme på d- heaps og heapsort .

Heap -datastrukturen må ikke forveksles med begrebet en heap i dynamisk hukommelsesallokering . Udtrykket blev først brugt specifikt til datastrukturer. Nogle tidlige populære programmeringssprog som LISP leverede dynamisk hukommelsesallokering ved hjælp af "heap" datastrukturen, som gav sit navn til den tildelte mængde hukommelse. [1] .

Dynger er normalt implementeret som arrays, hvilket eliminerer behovet for pointere mellem dets elementer.

Følgende operationer udføres normalt på heaps:

Indstillinger

Sammenligning af teoretiske estimater af varianter

Nedenfor er estimater af tidskompleksiteten af ​​beregninger for operationer på visse typer af dynger. [1] Hvor en værdi er markeret med en stjerne, er estimatet baseret på amortiseringsanalyse (worst time), ellers er estimatet et regulært worst case. O(F) giver en asymptotisk øvre grænse, og Θ(F) er et asymptotisk nøjagtigt estimat (se notationen "O" stor og "o" lille ). Operationsnavnene er valgt for min-heapen.

(*) Amortiseringstid
(**) Hvor n er størrelsen af ​​den største bunke

Bemærk at "Brodals kø" er en implementering af en parallel prioritetskø udviklet af en gruppe ledet af Gert Brodal. [3]

Ansøgning

Heap-datastrukturer har mange anvendelsesmuligheder.

En komplet og næsten komplet binær heap kan repræsenteres på en meget effektiv måde ved hjælp af et indeksarray . Det første (eller sidste) element vil indeholde roden. De næste to elementer i arrayet indeholder rodens underordnede noder. De næste fire elementer indeholder fire børn fra to noder, der er børn af roden osv. Således vil børnene af niveauknuden nvære placeret på positioner 2nog 2n+1for en matrix indekseret fra én, eller ved positioner 2n+1og 2n+2for en matrix indekseret fra nul. Dette giver dig mulighed for at bevæge dig op eller ned i træet ved at lave simple matrixindeksberegninger. Heap-balancering udføres ved at omarrangere elementer, der er ude af drift. Da vi kan bygge en heap ved hjælp af et array uden ekstra hukommelse (for knudepunkter, for eksempel), kan vi bruge heapsort til at sortere arrayet på plads.

Implementeringer

Se også

Noter

  1. 1 2 3 Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest (1990): Introduction to algorithms. MIT Press / McGraw-Hill.
  2. Iacono, John (2000), Forbedrede øvre grænser for parringsdynger , Proc. 7. Skandinavisk Workshop om Algorithm Theory , vol. 1851, Lecture Notes in Computer Science, Springer-Verlag, s. 63–77 , DOI 10.1007/3-540-44985-X_5 
  3. A Parallel Priority Queue with Constant Time Operations , < http://www.ceid.upatras.gr/faculty/zaro/pub/jou/J9-JPDC-pq.pdf > Arkiveret 26. juli 2011 på Wayback Machine 
  4. Frederickson, Greg N. (1993), An Optimal Algorithm for Selection in a Min-Heap , Information and Computation , vol. 104, Academic Press, s. 197–214, doi : 10.1006/inco.1993.1030 , < http://ftp.cs.purdue.edu/research/technical_reports/1991/TR%2091-027.pdf > Arkiveret 3. december 2012 på Wayback Machine 
  5. Python heapq . Hentet 31. maj 2011. Arkiveret fra originalen 18. oktober 2012.
  6. Perl Heap