Fermats pseudoprimtal er sammensatte tal , der består Fermat-testen . Opkaldt efter den franske matematiker Pierre de Fermat . I talteorien udgør Fermats pseudoprimer den vigtigste klasse af pseudoprimer .
Et sammensat tal kaldes pseudoprimtal , hvis det opfylder en nødvendig (men ikke tilstrækkelig ) betingelse for, at tallet er primtal, det vil sige, hvis det har nogle egenskaber af et primtal .
Fermats lille sætning siger, at hvis n er et primtal, så gælder kongruensen for hvert tal en coprime til n .
Et sammensat tal n kaldes et Fermat-pseudoprime i base a (coprime til n ), hvis sammenligning foretages . Med andre ord siges et sammensat tal at være pseudoprime, hvis det består Fermat-testen for at basere et [1] . Et tal, der er Fermats pseudoprime i hver coprime-base, kaldes et Carmichael-tal .
Der er nogle variationer af definitionen:
Der er uendeligt mange pseudoprimer i en given base (derudover er der uendeligt mange stærke pseudoprimer [4] og uendeligt mange Carmichael-tal [5] ), men de er ret sjældne [6] . Der er kun tre base-2 Fermat pseudoprimer mindre end 1000, 245 mindre end en million og kun 21853 mindre end 25 milliarder [4] .
De mindste Fermat-pseudosimple for hver base a ≤ 200 er angivet i tabellen nedenfor; farver skelner tal ved antallet af forskellige primdivisorer [7] .
Fermats mindste pseudosimple | |||||||
---|---|---|---|---|---|---|---|
-en | Mindste p-pF | -en | Mindste p-pF | -en | Mindste p-pF | -en | Mindste p-pF |
en | 4 = 2² | 51 | 65 = 5 13 | 101 | 175 = 5² 7 | 151 | 175 = 5² 7 |
2 | 341 = 11 31 | 52 | 85 = 5 17 | 102 | 133 = 7 19 | 152 | 153 = 3² 17 |
3 | 91 = 7 13 | 53 | 65 = 5 13 | 103 | 133 = 7 19 | 153 | 209 = 11 19 |
fire | 15 = 3 5 | 54 | 55 = 5 11 | 104 | 105 = 3 5 7 | 154 | 155 = 5 31 |
5 | 124 = 2² 31 | 55 | 63 = 3² 7 | 105 | 451 = 11 41 | 155 | 231 = 3 7 11 |
6 | 35 = 5 7 | 56 | 57 = 3 19 | 106 | 133 = 7 19 | 156 | 217 = 7 31 |
7 | 25 = 5² | 57 | 65 = 5 13 | 107 | 133 = 7 19 | 157 | 186 = 2 3 31 |
otte | 9 = 3² | 58 | 133 = 7 19 | 108 | 341 = 11 31 | 158 | 159 = 3 53 |
9 | 28 = 2² 7 | 59 | 87 = 3 29 | 109 | 117 = 3² 13 | 159 | 247 = 13 19 |
ti | 33 = 3 11 | 60 | 341 = 11 31 | 110 | 111 = 3 37 | 160 | 161 = 7 23 |
elleve | 15 = 3 5 | 61 | 91 = 7 13 | 111 | 190 = 2 5 19 | 161 | 190=2 5 19 |
12 | 65 = 5 13 | 62 | 63 = 3² 7 | 112 | 121 = 11² | 162 | 481 = 13 37 |
13 | 21 = 3 7 | 63 | 341 = 11 31 | 113 | 133 = 7 19 | 163 | 186 = 2 3 31 |
fjorten | 15 = 3 5 | 64 | 65 = 5 13 | 114 | 115 = 5 23 | 164 | 165 = 3 5 11 |
femten | 341 = 11 13 | 65 | 112 = 24 7 | 115 | 133 = 7 19 | 165 | 172 = 2² 43 |
16 | 51 = 3 17 | 66 | 91 = 7 13 | 116 | 117 = 3² 13 | 166 | 301 = 7 43 |
17 | 45 = 3² 5 | 67 | 85 = 5 17 | 117 | 145 = 5 29 | 167 | 231 = 3 7 11 |
atten | 25 = 5² | 68 | 69 = 3 23 | 118 | 119 = 7 17 | 168 | 169 = 13² |
19 | 45 = 3² 5 | 69 | 85 = 5 17 | 119 | 177 = 3 59 | 169 | 231 = 3 7 11 |
tyve | 21 = 3 7 | 70 | 169 = 13² | 120 | 121 = 11² | 170 | 171 = 3² 19 |
21 | 55 = 5 11 | 71 | 105 = 3 5 7 | 121 | 133 = 7 19 | 171 | 215 = 5 43 |
22 | 69 = 3 23 | 72 | 85 = 5 17 | 122 | 123 = 3 41 | 172 | 247 = 13 19 |
23 | 33 = 3 11 | 73 | 111 = 3 37 | 123 | 217 = 7 31 | 173 | 205 = 5 41 |
24 | 25 = 5² | 74 | 75 = 3 5² | 124 | 125 = 5³ | 174 | 175 = 5² 7 |
25 | 28 = 2² 7 | 75 | 91 = 7 13 | 125 | 133 = 7 19 | 175 | 319 = 11 19 |
26 | 27 = 3³ | 76 | 77 = 7 11 | 126 | 247 = 13 19 | 176 | 177 = 3 59 |
27 | 65 = 5 13 | 77 | 247 = 13 19 | 127 | 153 = 3² 17 | 177 | 196 = 2² 7² |
28 | 45 = 3² 5 | 78 | 341 = 11 31 | 128 | 129 = 3 43 | 178 | 247 = 13 19 |
29 | 35 = 5 7 | 79 | 91 = 7 13 | 129 | 217 = 7 31 | 179 | 185 = 5 37 |
tredive | 49 = 7² | 80 | 81 = 34 | 130 | 217 = 7 31 | 180 | 217 = 7 31 |
31 | 49 = 7² | 81 | 85 = 5 17 | 131 | 143 = 11 13 | 181 | 195 = 3 5 13 |
32 | 33 = 3 11 | 82 | 91 = 7 13 | 132 | 133 = 7 19 | 182 | 183 = 3 61 |
33 | 85 = 5 17 | 83 | 105 = 3 5 7 | 133 | 145 = 5 29 | 183 | 221 = 13 17 |
34 | 35 = 5 7 | 84 | 85 = 5 17 | 134 | 135 = 3³ 5 | 184 | 185 = 5 37 |
35 | 51 = 3 17 | 85 | 129 = 3 43 | 135 | 221 = 13 17 | 185 | 217 = 7 31 |
36 | 91 = 7 13 | 86 | 87 = 3 29 | 136 | 265 = 5 53 | 186 | 187 = 11 17 |
37 | 45 = 3² 5 | 87 | 91 = 7 13 | 137 | 148 = 2² 37 | 187 | 217 = 7 31 |
38 | 39 = 3 13 | 88 | 91 = 7 13 | 138 | 259 = 7 37 | 188 | 189 = 3³ 7 |
39 | 95 = 5 19 | 89 | 99 = 3² 11 | 139 | 161 = 7 23 | 189 | 235 = 5 47 |
40 | 91 = 7 13 | 90 | 91 = 7 13 | 140 | 141 = 3 47 | 190 | 231 = 3 7 11 |
41 | 105 = 3 5 7 | 91 | 115 = 5 23 | 141 | 355 = 5 71 | 191 | 217 = 7 31 |
42 | 205 = 5 41 | 92 | 93 = 3 31 | 142 | 143 = 11 13 | 192 | 217 = 7 31 |
43 | 77 = 7 11 | 93 | 301 = 7 43 | 143 | 213 = 3 71 | 193 | 276 = 2² 3 23 |
44 | 45 = 3² 5 | 94 | 95 = 5 19 | 144 | 145 = 5 29 | 194 | 195 = 3 5 13 |
45 | 76 = 2² 19 | 95 | 141 = 3 47 | 145 | 153 = 3² 17 | 195 | 259 = 7 37 |
46 | 133 = 7 19 | 96 | 133 = 7 19 | 146 | 147 = 3 7² | 196 | 205 = 5 41 |
47 | 65 = 5 13 | 97 | 105 = 3 5 7 | 147 | 169 = 13² | 197 | 231 = 3 7 11 |
48 | 49 = 7² | 98 | 99 = 3² 11 | 148 | 231 = 3 7 11 | 198 | 247 = 13 19 |
49 | 66 = 2 3 11 | 99 | 145 = 5 29 | 149 | 175 = 5² 7 | 199 | 225 = 3² 5² |
halvtreds | 51 = 3 17 | 100 | 153 = 3² 17 | 150 | 169 = 13² | 200 | 201 = 3 67 |
Fermat pseudosimple til base 2 kaldes Poulet-tal , efter den belgiske matematiker Paul Poulet [8] . Faktoriseringen af de enogtresindstyve Poolet-tal, inklusive de tretten Carmichael-tal (fremhævet med fed), er i tabellen nedenfor.
Poole numre | |||||||
---|---|---|---|---|---|---|---|
Poole 1 - 15 | Poole 16 - 30 | Poole 31 - 45 | Poole 46 - 60 | ||||
341 | 11 31 | 4681 | 31 151 | 15709 | 23 683 | 33153 | 3 43 257 |
561 | 3 11 17 | 5461 | 43 127 | 15841 | 7 31 73 | 34945 | 5 29 241 |
645 | 3 5 43 | 6601 | 7 23 41 | 16705 | 5 13 257 | 35333 | 89 397 |
1105 | 5 13 17 | 7957 | 73 109 | 18705 | 3 5 29 43 | 39865 | 5 7 17 67 |
1387 | 19 73 | 8321 | 53 157 | 18721 | 97 193 | 41041 | 7 11 13 41 |
1729 | 7 13 19 | 8481 | 3 11 257 | 19951 | 71 281 | 41665 | 5 13 641 |
1905 | 3 5 127 | 8911 | 7 19 67 | 23001 | 3 11 17 41 | 42799 | 127 337 |
2047 | 23 89 | 10261 | 31 331 | 23377 | 97 241 | 46657 | 13 37 97 |
2465 | 5 17 29 | 10585 | 5 29 73 | 25761 | 3 31 277 | 49141 | 157 313 |
2701 | 37 73 | 11305 | 5 7 17 19 | 29341 | 13 37 61 | 49981 | 151 331 |
2821 | 7 13 31 | 12801 | 3 17 251 | 30121 | 7 13 331 | 52633 | 7 73 103 |
3277 | 29 113 | 13741 | 7 13 151 | 30889 | 17 23 79 | 55245 | 3 5 29 127 |
4033 | 37 109 | 13747 | 59 233 | 31417 | 89 353 | 57421 | 7 13 631 |
4369 | 17 257 | 13981 | 11 31 41 | 31609 | 73 433 | 60701 | 101 601 |
4371 | 3 31 47 | 14491 | 43 337 | 31621 | 103 307 | 60787 | 89 683 |
Poole-tallet, hvor alle divisorer d også deler tallet 2 d − 2, kaldes super Poole -tallet . Der er uendeligt mange Poulet-numre, der ikke er super-Poulet-numre [9] .
Fermats første pseudoprimer (op til 10.000) i base a | ||
---|---|---|
-en | Fermat pseudoprimer (op til 10.000) | OEIS-sekvens (link er eksternt) |
en | 4, 6, 8, 9, 10, 12, 14, 15, 16, 18, 20, 21, 22, 24, 25, 26, 27, 28, 30, 32, 33, 34, 35, 36, 38, 39, 40, 42, 44, 45, 46, 48, 49, 50, 51, 52, 54, 55, 56, 57, 58, 60, 62, 63, 64, 65, 66, 68, 69, 72, 74, 75, 76, 77, 78, 80, 81, 82, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 95, 96, 98, 99, ( 100, … alle sammensatte tal) | A002808 |
2 | 341 561 645 1105 1387 1729 1905 2047 2465 2701 2821 3277 4033 4369 4371 4681 5461 6601 7957 83218 | A001567 |
3 | 91 121 286 671 703 949 1105 1541 1729 1891 2465 2665 2701 2821 3281 3367 3751 4961 5551 6601 401 | A005935 |
fire | 15, 85, 91, 341, 435, 451, 561, 645, 703, 1105, 1247, 1271, 1387, 1581, 1695, 1729, 1891, 1905, 2047, 2071, 2465, 2701, 33.3 3367 3683 4033 4369 4371 4681 4795 4859 5461 5551 6601 6643 7957 8321 8481 8695 8911 9061 9131 9211 9195 | A020136 |
5 | 4, 124, 217, 561, 781, 1541, 1729, 1891, 2821, 4123, 5461, 5611, 5662, 5731, 6601, 7449, 7819, 81 | A005936 |
6 | 35, 185, 217, 301, 481, 1105, 1111, 1261, 1333, 1729, 2465, 2701, 2821, 3421, 3565, 3589, 3913, 3, 3, 3, 4, 3, 4 | A005937 |
7 | 6, 25, 325, 561, 703, 817, 1105, 1825, 2101, 2353, 2465, 3277, 4525, 4825, 6697, 8321 | A005938 |
otte | 9, 21, 45, 63, 65, 105, 117, 133, 153, 231, 273, 341, 481, 511, 561, 585, 645, 651. 1417, 1541, 1649, 1661, 1729, 1785, 1905, 2047, 2169, 2465, 2501, 2701, 2821, 3145, 3171, 3201, 3277, 3605, 3641, 4005, 4033, 4097, 4369, 4371, 4641. 4681, 4921, 5461, 5565, 5963, 6305, 6533, 6601, 6951, 7107, 7161, 7957, 8321, 8481, 8911, 7069, 9,91, 7069, 91 | A020137 |
9 | 4, 8, 28, 52, 91, 121, 205, 286, 364, 511, 532, 616, 671, 697, 703, 946, 949, 1036. 2501, 2665, 2701, 2806, 2821, 2926, 3052, 3281, 3367, 3751, 4376, 4636, 4961, 5356, 5551, 6364, 6601, 6643, 7081, 7381, 7913, 8401, 8695, 874444, 886, 886, 886, 886, 886, 886, 796, 7913, 8401, 8695544444, 886, 886666666666666666666666666666666666666666666666666666666666666666666666666666666662 8911 | A020138 |
ti | 9, 33, 91, 99, 259, 451, 481, 561, 657, 703, 909, 1233, 1729, 2409, 2821, 2981, 3333. , 7777, 8149, 8401, 8911 | A005939 |
elleve | 10, 15, 70, 133, 190, 259, 305, 481, 645, 703, 793, 1105, 1330, 1729, 2047, 2257. , 9730 | A020139 |
12 | 65, 91, 133, 143, 145, 247, 377, 385, 703, 1045, 1099, 1105, 1649, 1729, 1885, 1891. 5785, 6061, 6305, 6601, 8911, 9073 | A020140 |
13 | 4, 6, 12, 21, 85, 105, 231, 244, 276, 357, 427, 561, 1099, 1785, 1891, 2465. , 9577, 9637 | A020141 |
fjorten | 15, 39, 65, 195, 481, 561, 781, 793, 841, 985, 1105, 1111, 1541, 1891, 2257. 7449, 7543, 7585, 8321, 9073 | A020142 |
femten | 14, 341, 742, 946, 1477, 1541, 1687, 1729, 1891, 1921, 2821, 3133, 3277, 4187, 6541, 6601, 7401, 7401, 0 | A020143 |
16 | 15, 51, 85, 91, 255, 341, 435, 451, 561, 595, 645, 703, 1105, 1247, 1261, 1271, 1285. , 2431, 2465, 2701, 2821, 3133, 3277, 3367, 3655, 3683, 4033, 4369, 4371, 4681, 4795, 4859, 5083, 5151, 5461, 5551, 662 , 7735, 7735, 7735. 7957, 8119, 8227, 8245, 8321, 8481, 8695, 8749, 8911, 9061, 9131, 9211, 9105, 9105, | A020144 |
17 | 4, 8, 9, 16, 45, 91, 145, 261, 781, 1111, 1228, 1305, 1729, 1885, 2149, 2821, 3991. , 8481, 8911 | A020145 |
atten | 25, 49, 65, 85, 133, 221, 323, 325, 343, 425, 451, 637, 931, 1105, 1225, 1369, 1387. 3325, 4165, 4577, 4753, 5525, 5725, 5833, 5941, 6305, 6517, 6601, 7345, 8911, 9061 | A020146 |
19 | 6, 9, 15, 18, 45, 49, 153, 169, 343, 561, 637, 889, 905, 906, 1035, 1105, 1629, 1661. , 4033, 4681, 5461, 5466, 5713, 6223, 6541, 6601, 6697, 7957, 8145, 8281, 8401, 8869, 9211, 9997 | A020147 |
tyve | 21, 57, 133, 231, 399, 561, 671, 861, 889, 1281, 1653, 1729, 1891, 2059, 2413, 2501. , 6817, 7999, 8421, 8911 | A020148 |
21 | 4, 10, 20, 55, 65, 85, 221, 703, 793, 1045, 1105, 1852, 2035, 2465, 3781, 4630, 5185. | A020149 |
22 | 21 69 91 105 161 169 345 483 485 645 805 1105 1183 1247 1261 1541 1649 1729 1891 2037 2041 2047 2437 2437 2821, 3241, 3605, 3801, 5551, 5565, 5963, 6019, 6601, 667 7665, 8119, 8365, 8421, 8911, 9453 | A020150 |
23 | 22, 33, 91, 154, 165, 169, 265, 341, 385, 451, 481, 553, 561, 638, 946, 1027. 2465, 2501, 2701, 2821, 2926, 3097, 3445, 4033, 4081, 4345, 4371, 4681, 5005, 5149, 6253, 6369, 6533, 6541, 7189, 7267, 7957, 8321, 83655, 8651, 874 8911, 8965, 9805 | A020151 |
24 | 25, 115, 175, 325, 553, 575, 805, 949, 1105, 1541, 1729, 1771, 1825, 1975, 2413, 2425. , 7189, 7471, 7501, 7813, 8725, 8911, 9085, 9361, 9809 | A020152 |
25 | 4, 6, 8, 12, 24, 28, 39, 66, 91, 124, 217, 232, 276, 403, 426, 451, 532, 561, 616, 703, 781, 6, 81, 8, 8, 8, 81 1288, 1541, 1729, 1891, 2047. 5662, 5731, 5963, 6601, 7449, 7588, 7813, 8029, 8646, 8911, 9876, 9 | A020153 |
26 | 9, 15, 25, 27, 45, 75, 133, 135, 153, 175, 217, 225, 259, 425, 475, 561, 589, 675, 703. 3145, 3325, 3385, 3565, 3825, 4123, 4525, 4741, 4921, 5041, 5425, 6093, 6475, 6525. | A020154 |
27 | 26, 65, 91, 121, 133, 247, 259, 286, 341, 365, 481, 671, 703, 949, 1001, 1105, 1541. 2993, 3146, 3281, 3367, 3605, 3751, 4033, 4745, 4921, 4961, 5299, 5461, 5551, 5611, 5621, 6305, 6533, 6601, 7381, 7585, 7957, 8227, 8321 9139, 9709, 9809, 9841, 9881, 9919 | A020155 |
28 | 9, 27, 45, 87, 145, 261, 361, 529, 561, 703, 783, 785, 1105, 1305, 1413, 1431, 1885, 2041, 2413,1 , 5365, 7065, 8149, 8321, 8401, 9841 | A020156 |
29 | 4, 14, 15, 21, 28, 35, 52, 91, 105, 231, 268, 341, 364, 469, 481, 561, 651, 793, 871, 1105, 1729, 172, 172, 176 2821, 3484, 3523, 4069, 4371, 4411, 5149, 5185, 5356, 5473, 5565, 5611, 6097. | A020157 |
tredive | 49, 91, 133, 217, 247, 341, 403, 469, 493, 589, 637, 703, 871, 899, 901, 931, 1273. , 3367, 3577, 4081, 4097, 4123, 5729, 6031, 6061, 6097, 6409, 6601, 6817, 7657, 8023, 8029, 8111, 8111 | A020158 |
For mere information om Fermat-pseudoprimer til baserne 31 - 100, se artiklerne A020159 - A020228 i Encyclopedia of Integer Sequences [10] .
Nedenfor er en tabel over alle baser b < n , for hvilke n er et Fermat-pseudoprimtal (alle sammensatte tal er pseudoprimtal i grundtal 1, og for b > n forskydes løsningen blot med k * n , hvor k > 0), hvis den sammensatte nummer n er ikke angivet i tabellen, så er det kun pseudoprime i base 1, eller i baser, der er sammenlignelige med 1 (mod n ), det vil sige antallet af baser b er 1. Tabellen er kompileret for n < 180 [11] .
Baser b , for hvilke n er pseudoprim | ||
---|---|---|
n | Baser b , for hvilke n er pseudosimple Fermat(< n ) | Antal baser b (< n ) [12] |
9 | atten | 2 |
femten | 1, 4, 11, 14 | fire |
21 | 1, 8, 13, 20 | fire |
25 | 1, 7, 18, 24 | fire |
27 | 1, 26 | 2 |
28 | 1, 9, 25 | 3 |
33 | 1, 10, 23, 32 | fire |
35 | 1, 6, 29, 34 | fire |
39 | 1, 14, 25, 38 | fire |
45 | 1, 8, 17, 19, 26, 28, 37, 44 | otte |
49 | 1, 18, 19, 30, 31, 48 | 6 |
51 | 1, 16, 35, 50 | fire |
52 | 1, 9, 29 | 3 |
55 | 1, 21, 34, 54 | fire |
57 | 1, 20, 37, 56 | fire |
63 | 1, 8, 55, 62 | fire |
65 | 1, 8, 12, 14, 18, 21, 27, 31, 34, 38, 44, 47, 51, 53, 57, 64 | 16 |
66 | 1, 25, 31, 37, 49 | 5 |
69 | 1, 22, 47, 68 | fire |
70 | 1, 11, 51 | 3 |
75 | 1, 26, 49, 74 | fire |
76 | 1, 45, 49 | 3 |
77 | 1, 34, 43, 76 | fire |
81 | 1,80 | 2 |
85 | 1, 4, 13, 16, 18, 21, 33, 38, 47, 52, 64, 67, 69, 72, 81, 84 | 16 |
87 | 1, 28, 59, 86 | fire |
91 | 1, 3, 4, 9, 10, 12, 16, 17, 22, 23, 25, 27, 29, 30, 36, 38, 40, 43, 48, 51, 53, 55, 61, 62, 64, 66, 68, 69, 74, 75, 79, 81, 82, 87, 88, 90 |
36 |
93 | 1, 32, 61, 92 | fire |
95 | 1, 39, 56, 94 | fire |
99 | 1, 10, 89, 98 | fire |
105 | 1, 8, 13, 22, 29, 34, 41, 43, 62, 64, 71, 76, 83, 92, 97, 104 | 16 |
111 | 1, 38, 73, 110 | fire |
112 | 1, 65, 81 | 3 |
115 | 1, 24, 91, 114 | fire |
117 | 1, 8, 44, 53, 64, 73, 109, 116 | otte |
119 | 1, 50, 69, 118 | fire |
121 | 1, 3, 9, 27, 40, 81, 94, 112, 118, 120 | ti |
123 | 1, 40, 83, 122 | fire |
124 | 1, 5, 25 | 3 |
125 | 1, 57, 68, 124 | fire |
129 | 1, 44, 85, 128 | fire |
130 | 1, 61, 81 | 3 |
133 | 1, 8, 11, 12, 18, 20, 26, 27, 30, 31, 37, 39, 45, 46, 50, 58, 64, 65, 68, 69, 75, 83, 87, 88, 94, 96, 102, 103, 106, 107, 113, 115, 121, 122, 125, 132 |
36 |
135 | 1, 26, 109, 134 | fire |
141 | 1, 46, 95, 140 | fire |
143 | 1, 12, 131, 142 | fire |
145 | 1, 12, 17, 28, 41, 46, 57, 59, 86, 88, 99, 104, 117, 128, 133, 144 | 16 |
147 | 1, 50, 97, 146 | fire |
148 | 1, 121, 137 | 3 |
153 | 1, 8, 19, 26, 35, 53, 55, 64, 89, 98, 100, 118, 127, 134, 145, 152 | 16 |
154 | 1, 23, 67 | 3 |
155 | 1, 61, 94, 154 | fire |
159 | 1, 52, 107, 158 | fire |
161 | 1, 22, 139, 160 | fire |
165 | 1, 23, 32, 34, 43, 56, 67, 76, 89, 98, 109, 122, 131, 133, 142, 164 | 16 |
169 | 1, 19, 22, 23, 70, 80, 89, 99, 146, 147, 150, 168 | 12 |
171 | 1, 37, 134, 170 | fire |
172 | 1, 49, 165 | 3 |
175 | 1, 24, 26, 51, 74, 76, 99, 101, 124, 149, 151, 174 | 12 |
176 | 1, 49, 81, 97, 113 | 5 |
177 | 1, 58, 119, 176 | fire |
Det skal bemærkes, at hvis p er primtal, så er p2 Fermats pseudoprime til base b , hvis og kun hvis p er en Wieferich prime til base b . For eksempel er 1093 2 = 1 194 649 Fermats pseudosimple base 2.
Antallet af baser b for n (for primtal n skal antallet af baser b være lig med n-1 , da alle b opfylder Fermats lille sætning ):
1, 1, 2, 1, 4, 1, 6, 1, 2, 1, 10, 1, 12, 1, 4, 1, 16, 1, 18, 1, 4, 1, 22, 1, 4, 1, 2, 3, 28, 1, 30, 1, 4, 1, 4, 1, 36, 1, 4, 1, 40, 1, 42, 1, 8, 1, 46, 1, 6, 1, … (sekvens A063994 i OEIS )Den mindste base b > 1, for hvilken n er pseudoprime (eller prime):
2, 3, 2, 5, 2, 7, 2, 9, 8, 11, 2, 13, 2, 15, 4, 17, 2, 19, 2, 21, 8, 23, 2, 25, 7, 27, 26, 9, 2, 31, 2, 33, 10, 35, 6, 37, 2, 39, 14, 41, 2, 43, 2, 45, 8, 47, 2, 49, 18, 51, … (sekvens A105222 i OEIS ).Et sammensat tal n , der opfylder sammenligningen b n = b (mod n ), kaldes et svagt Fermat-pseudoprimtal til base b (her behøver b ikke at være coprime til n ) [13] . De mindste svage pseudoprimer til base b er:
4, 341, 6, 4, 4, 6, 6, 4, 4, 6, 10, 4, 4, 14, 6, 4, 4, 6, 6, 4, 4, 6, 22, 4, 4, 9, 6, 4, 4, 6, 6, 4, 4, 6, 9, 4, 4, 38, 6, 4, 4, 6, 6, 4, 4, 6, 46, 4, 4, 10, … (sekvens A000790 i OEIS )Hvis det kræves, at n > b , så:
4, 341, 6, 6, 10, 10, 14, 9, 12, 15, 15, 22, 21, 15, 21, 20, 34, 25, 38, 21, 28, 33, 33, 25, 28, 27, 39, 36, 35, 49, 49, 33, 44, 35, 45, 42, 45, 39, 57, 52, 82, 66, 77, 45, 55, 69, 65, 49, 56, 56, … (sekvens A239293 i OEIS )På grund af deres sjældenhed har sådanne pseudoprimer vigtige praktiske anvendelser. For eksempel kræver public-key kryptografiske algoritmer såsom RSA evnen til hurtigt at finde store primtal [14] . Den sædvanlige algoritme til at generere primtal er at generere tilfældige ulige tal og teste dem for primehed . Deterministiske primalitetstests er dog langsomme. Hvis vi er villige til at acceptere en vilkårligt lille sandsynlighed for, at det fundne tal ikke er primtal, men pseudoprimtal, kan en meget hurtigere og enklere Fermats test bruges .