Tyngdekraftstab

Tyngdekraftstab er en stigning i den karakteristiske hastighed , der kræves for at fuldføre en orbital manøvre på grund af en jetmotors drift mod tyngdekraften. Det er med andre ord omkostningerne ved at holde raketten i gravitationsfeltet .

Under hele manøvren virker tyngdeaccelerationen på raketten , som delvist kompenserer for dens egen acceleration, som en fungerende raket har erhvervet. Samtidig, jo lavere motorkraften er, jo mere tid vil den have til at arbejde for at fuldføre manøvren, jo flere tab vil have tid til at akkumulere i løbet af denne tid.

Hvis for eksempel en rakets fremdrift kun er lidt større end dens vægt, vil den stige meget langsomt under start, og næsten alt brændstoffet vil blive brugt på at holde den i rummet. Du kan reducere gravitationstab ved at øge motorens effekt, men den bliver tungere og dyrere. Søgen efter et kompromis er et af raketvidenskabens problemer.

Tab afhænger også af missilets hældning. Ved lancering fra jorden opstår de fleste af disse tab i begyndelsen af ​​flyvningen, når banen er tættere på lodret, og den lodrette komponent af tryk er maksimal.

Størrelsen af ​​tab beregnes ved formlen [1] :

,

hvor er den lokale frie faldsacceleration [komm. 1] ,  er trykvektorvinklen over horisonten.

Når et rumfartøj opsendes i en lav bane om jorden , er det nødvendigt at opnå den første rumhastighed svarende til 7,8 km/s (for en bane med en højde på 200 km). På grund af forskellige tab (tyngde-, aerodynamiske , kontroltab [komm. 2] ) kræves der dog en højere karakteristisk hastighed fra raketten, som er 9-10 km/s [2] . Samtidig skyldes i praksis en betydelig del af alle tab tyngdekraften: for eksempel, for Saturn-5 løfteraketten under opsendelser under Apollo-programmet, tegnede de sig for 88 % [3] af alle tab i den aktive del af banen.

I modsætning til raketter oplever fly på grund af løftekraften praktisk talt ikke gravitationstab. Dette er en af ​​grundene til, at orbitale fly i fremtiden kan vise sig at være en mere økonomisk måde at starte i kredsløb [4] .

Se også

Noter

  1. Gyldig for tryk-til-vægt-forhold større end 1 . I det generelle tilfælde bør det være , hvor er motorens bidrag til accelerationen.
  2. Hvis trykretningen ikke falder sammen med bevægelsesretningen, bruges en del af fremstødet ikke til at accelerere, men til at ændre retning.

Kilder

  1. Sikharulidze, 2013 , s. 104.
  2. Lobanovsky Yu. I. Prognose for værdien af ​​den karakteristiske opsendelseshastighed i lav kredsløb om Jorden . - 2008. - S. 17 . Arkiveret fra originalen den 13. oktober 2017.
  3. Shuneiko I. I. Bemandede flyvninger til Månen, design og karakteristika for Saturn V Apollo. - M. : VINITI, 1973. - S. 24.
  4. Sobol S. Tag ikke fejl ved at vælge // Teknik for ungdom. - 2000. - Juli. - S. 24 . — ISSN 0320-331X .

Litteratur